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Abstract

Structure learning algorithms that learn the graph of a Bayesian network from observational
data often do so by assuming the data correctly reflect the true distribution of the variables.
However, this assumption does not hold in the presence of measurement error, which can
lead to spurious edges. This is one of the reasons why the synthetic performance of these
algorithms often overestimates real-world performance. This paper describes a heuristic
algorithm that can be added as an additional learning phase at the end of any structure
learning algorithm, and serves as a correction learning phase that removes potential false
positive edges. The results show that the proposed correction algorithm successfully im-
proves the graphical score of five well-established structure learning algorithms spanning
different classes of learning in the presence of measurement error.

Keywords: causal discovery, data noise, directed acyclic graph, measurement error,
probabilistic graphical models

1. Introduction

A Bayesian Network (BN) is a probabilistic graphic model that captures causal or condi-
tional independence relationships between variables via a directed acyclic graph (DAG).
Learning BNs from observational data is recognised as a challenging problem that has re-
ceived increasing attention during the past few decades. Various algorithms have been
proposed to tackle this problem and are categorised into constraint-based, score-based and
hybrid learning algorithms.

The PC algorithm (Spirtes et al., 2000) is one of the earliest proposed constraint-
based algorithms which attempts to recover the Completed Partial Directed Acyclic Graph
(CPDAG) of the underlying true causal graph by performing conditional independence tests
between variables. Many other algorithms are derived from PC, including MMPC (Tsamardi-
nos et al., 2003) which can handle thousands of variables via sequentially choosing the vari-
able with the maximum association with the target variable into its parents and children
set, PC-fdr (Li and Wang, 2009) which controls the false discovery rate of the skeleton of
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the learned graph under a user-specified level of false discovery rate at the limit of large
sample sizes and PC-stable (Colombo and Maathuis, 2014) which resolves the issue of PC’s
output being dependent on the order of variables as they appear in the data. The GES
algorithm (Chickering, 2002), on the other hand, is a well-established score-based algorithm
that searches for the optimal CPDAG over two phases. In phase I, GES greedily adds edges
that maximise the Bayesian score, whereas in phase II, it greedily removes edges that max-
imise the Bayesian score. The ILP algorithm (Cussens, 2011) is another well-established
algorithm that tackles the structure learning problem with the integer linear programming
approach. Lastly, hybrid learning algorithms combine both classes of learning, constraint-
based and score-based, and include the MMHC algorithm (Tsamardinos et al., 2006) that
combines MMPC with hill-climbing search, and the H2PC algorithm (Gasse et al., 2014)
that combines HPC (Gasse et al., 2014) with hill-climbing search.

Most of these algorithms assume that their input data are accurately sampled from the
true distributions. However, this assumption is often not true when working with real-world
data. The assumption of an underlying measurement error has only recently attracted at-
tention in terms of its effect on BN structure learning. Scheines et al (Scheines and Ramsey,
2016) studied the effect of Gaussian measurement error on score-based FGES (Ramsey et al.,
2017) and showed that even minor levels of measurement error can considerably deteriorate
its accuracy. Zhang et al (Zhang et al., 2018) investigated the linear non-Gaussian models
in the presence of measurement error and presented four conditions that make the underly-
ing structure identifiable from the observed variables that incorporate measurement error.
Lastly, Blom et al (Blom et al., 2018) proposed a method to estimate the upper bound of
the variance of measurement error in linear Gaussian models, and used this bound as a
correction of conditional independence tests during constraint-based learning.

Traditionally, measurement error is generated and modelled under the assumption of
Normally distributed and continuous data (Bollinger and van Hasselt, 2017), although
various other types of synthetic noise have recently been investigated with discrete vari-
ables (Constantinou et al., 2021). In this paper, we assume the data are discrete, and that
variables with measurement error are children of their underlying error-free version, and not
the actual parents of other variables, essentially making them independent of other variables
in the graph given their error-free version. We propose a heuristic score-based correction
method called the Spurious Edge Detection (SED) algorithm which aims to identify and
remove potential false positive (FP) edges learned by other structure learning algorithms,
often in the presence of measurement error. The remainder of the paper is organised as
follows: the terminology and underlying assumptions are described in Section 2, Section 3
illustrates the impact of measurement error on structure learning, Section 4 describes the
correction algorithm, Section 5 presents the results, and we provide our conclusions along
with future research directions in Section 6.

2. Preliminaries

This section presents the preliminaries and the necessary terminology and assumptions.
We assume that the data are categorical and that every variable present in the data may
be subject to measurement error. We refer to variables with measurement error as noisy
variables and to variables without measurement error as error-free variables. Each noisy
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variable is assumed to be derived from its error-free version which is not present in the
data. We denote the error-free variable as Vi where i represents the index of the error-free
variable, and its corresponding noisy variable as V ∗i . When a variable is error-free, Vi is
observed in the data, otherwise its noisy version V ∗i would be observed. We refer to observed
variable as the one that is observed in the data. We use lowercase letters to represent the
assignment of states where vli denotes the lth state of variable Vi or its corresponding V ∗i .
We define three types of graphs, i.e., error-free graph, noisy graph and learned graph based
on different involved variables and edges.

• Error-free graph G (V ,E) is composed of the error-free variables V and edges E
between V , and represents the true graph of the error-free variables V .

• Noisy graph G∗
(
V (∗),E(∗)) is composed of both error-free and noisy variables V (∗) =

V ∪V ∗ and edges E(∗) between V (∗), and represents the true graph of both the error-
free and noisy variables V (∗) = V ∪ V ∗.

• Learned graph Gl (V ,E) is composed of error-free variables V and edges E between
V , and represents the graph learned from observational data.

We assume that all graphs are Directed Acyclic Graphs (DAGs) and that the observed
data are sampled from the observed variables that make up the noisy graph, independently
and identically. Note that the observed data and learned graphs are presented using the
error-free variable names, since the algorithms are not given any information about which
variables incorporate measurement error.

Given a DAG G, if there is an edge Vj → Vi, then Vj is the parent of Vi and Vi is the
child of Vj . A node is the neighbour of Vi if it is either the parent or the child of Vi. A
path is a sequence of distinct nodes in which each pair of adjacent nodes are neighbours
in the graph. A directed path denotes that every node in the sequence is the parent of the
following node. If there is a directed path from Vi to Vj , then Vj is a descendant of Vi, and
Vi is an ancestor of Vj . A node Vi is its own descendant since there is an empty path from
Vi to Vi. Given a graph G, a node Vi is a collider in path p, if two parents of Vi are adjacent
to Vi in path p.

Based on the above definition, two nodes Vi and Vj in DAG G are d-separated given a
node set S if there is no path p between Vi and Vj such that (i) every collider in p has a
descendant in S, and (ii) no other nodes on p are in S (Spirtes et al., 2000). If Vi and Vj
are not d-separated given S, then Vi and Vj are d-connected given S. We refer to these two
relationships as d-separation and d-connection. If two DAGs G1 and G2 contain the same set
of d-separation relationships, we say that G1 and G2 are Markov Equivalent and in the same
Markov Equivalence Class. We define Partially Directed Acyclic Graph (PDAG) as a graph
with both directed and undirected edges but without directed cycles. A DAG is a consistent
DAG extension of a PDAG if it has the same set of edges with the same orientations on
the directed edges of that PDAG and the same set of v-structures (Dor and Tarsi, 1992). A
PDAG can be converted into a CPDAG if it admits at least one consistent DAG extension.

The assumption that a noisy variable V ∗i has only one parent, where this parent repre-
sents its error-free version Vi, produces the following Independence rule:
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Independence rule: In the presence of measurement error, a noisy variable V ∗i is
independent of other variables conditional on its error-free version Vi.

Figure 1 presents a simple example that illustrates the relationship between error-free
and noisy variables given the Independence rule, where each V ∗i becomes independent of
the remaining nodes given its corresponding error-free parent Vi. Moreover, if the error-free
variable Vi has value vli, its corresponding noisy version will be subject to an error rate αli
where

αli = 1− P
(
V ∗i = vli | Vi = vli

)
(1)

In other words, αli represents the rate of observing a value for V ∗i that is not equal to the
true value vli of Vi. Note that it is possible for different states of Vi to be subject to varying
error rates αli. We denote the error rate αi of variable V ∗i in terms of its maximum error
rate amongst all states in Vi, i.e., αi = max

l
αli.

V1

V ∗
1

V2

V ∗
2

V3

V ∗
3

G (V ,E)

G∗
(
V (∗),E(∗))

Figure 1: A hypothetical graph that illustrates the relationship between the error-free vari-
ables V and the corresponding noisy variables V ∗ given the Independence rule,
where a noisy variable V ∗i becomes independent of other variables in G∗ given Vi.

This paper also adopts the following widely used assumptions (Spirtes et al., 2000).
These assumptions are applied to both error-free and noisy graphs:

(i) Markov assumption: Given a directed acyclic graph G over a variable set V , every
variable in V is independent of its non-descendants conditional on its parents.

(ii) Causal Faithfulness assumption: Given a directed acyclic graph G over a variable
set V , a probability distribution P (V ) is faithful to G if and only if the conditional
independence relationships in P (V ) are exactly the same as the independence rela-
tionships inferred by d-separation criterion (Spirtes et al., 2000) from G.

(iii) Causal Sufficiency assumption: There are no unmeasured variables acting as a
common cause of any two or more observed variables, and there is no selection bias.

3. The impact of measurement error on structure learning

This section illustrates that measurement error generally causes the structure learning algo-
rithms to produce a higher number of spurious edges that tend to lead to a greater number
of 3-vertex cliques, compared to the true number of such cliques in the ground truth graph.
A clique is a set of nodes where each pair of nodes in the clique is adjacent. We first explain
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why this phenomenon occurs in theory, and then present the effect in practise by illustrat-
ing the empirical effect of measurement error on algorithms spanning all three classes of
learning. Given the Causal Faithfulness assumption, the dependencies between variables
are consistent with those entailed by applying d-separation rules on the BN. Therefore,
we restrict the description about the effect of measurement error on d-connections and
d-separations. For the unconditional (i.e., marginal (in)dependence) case, we derive the
Proposition 1.

Proposition 1 The d-connection and d-separation relationships between two error-free vari-
ables V1 and V2 in a noisy graph G∗ are consistent with the d-connection and d-separation
relationships of their corresponding noisy versions V ∗1 and V ∗2 , given the Independence rule.

Proof

1. When V1 and V2 are d-separated, this implies that there is either no path or at least
one collider exists in every path between V1 and V2 in G∗. Given Independence rule,
the only neighbours of V ∗1 and V ∗2 are V1 and V2 who serve as their respective error-free
parents. Thus, when there is no path or at least one collider in every path between
V ∗1 and V ∗2 , then V ∗1 and V ∗2 are d-separated.

2. When V1 and V2 are d-connected, there must be a path p that does not contain a
collider between V1 and V2. Given Independence rule, V1 and V2 are the respective
parents of V ∗1 and V ∗2 . Thus, by combining V ∗1 ← V1, p and V2 → V ∗2 , we can get a
path that does not contain a collider between V ∗1 and V ∗2 , which would make V ∗1 and
V ∗2 d-connected.

According to Proposition 1, the unconditional (in)dependence relationship between noisy
variables should be consistent with the unconditional (in)dependence relationship of their
corresponding error-free variables given the Causal Faithfulness assumption. However, the
conditional independence between error-free variables may not always hold for their corre-
sponding noisy versions. Figure 2 illustrates two different causal classes with measurement
error. Specifically, Figure 2a represents the causal class of common-effect where V1 and V2

are d-connected conditional on either V3 or its noisy version V ∗3 . Figure 2b represents the
causal class of causal-chain where V1 and V2 are d-separated conditional on V3, whereas
they are d-connected conditional on V ∗3 (this observation also holds for the causal class of
common-cause).

These lead to Propositions 2 and 3 which state that although the conditional d-connection
relations between noisy variables are consistent with those given by the error-free variables,
it is likely that some conditional d-separations will no longer hold when the observed vari-
ables incorporate measurement error such as the causal-chain example in Figure 3. In other
words, under the large sample limit, the learned graph will contain all the conditional depen-
dence relationships that are entailed by the error-free graph, but may miss some conditional
independence relationships that appear in the error-free graph.

Proposition 2 In a noisy graph G∗, if two error-free variables V1 and V2 are d-connected
given a variable set S, this d-connection will also hold for the noisy variables V ∗1 and V ∗2
conditional on the noisy variable set S∗.

5



Liu, Constantinou, and Guo
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Figure 2: Modelling the presence of measurement error on the two different causal equiv-
alence classes where case (a) represents the common-effect class, where V1 and
V2 are d-connected conditional on either V3 or V ∗3 , and (b) represents the causal-
chain class where V1 and V2 are d-separated conditional on V3, whereas they are
d-connected conditional on V ∗3 (this also holds for the causal class of common-
cause).

Proof If V1 and V2 are d-connected given S, there must be a path p between V1 and V2

such that (i) every collider in p has a descendant in S, and (ii) no other nodes in p are in
S. Because the nodes in S∗ are descendants of their corresponding error-free variables in
S, the descendant of every collider in p would be in S∗. Besides, since the nodes in S∗ are
leaf nodes in G∗, no nodes in p should be in S∗. By combining V ∗1 ← V1, p and V2 → V ∗2 ,
we can get a path p′ between V ∗1 and V ∗2 such that (i) every collider in p′ has a descendant
in S∗, and (ii) no other nodes in p′ are in S∗. Therefore, V ∗1 and V ∗2 are also d-connected
conditional on S∗.

According to Propositions 1 and 2, if two nodes Vi and Vj are adjacent in the noisy graph,
they are d-connected conditional on any observed variable set in the noisy graph. There-
fore they will be adjacent in the learned graph given the Causal Faithfulness assumption,
and under large sample limit. However, some of the conditional independence relation-
ships derived from the error-free graph might not hold in the observed data that contain
measurement error and hence, would lead to spurious edges in the learned graph.

Consider the simple noisy graph shown in Figure 3a which is composed by three error-
free variables V1, V2 and V3, and one noisy variable V ∗3 . According to Propositions 1
and 2, and with reference to the example in Figure 3a, the unconditional and conditional
dependencies between error-free variables V1 and V3 extent to their observed versions V1 and
V ∗3 . Therefore structure learning algorithms tend to produce an edge between V1 and V3 in
the graph learned from observed data under large sample limit and similarly for V2 and V3).
However, the only conditional independence relationship amongst the error-free variables,
i.e., V1 ⊥⊥ V2 | V3 would not hold when conditional on V ∗3 . Therefore, we get V1 6⊥⊥ V2 | V ∗3
and the incorrect fully connected graph shown in Figure 3b as the learned graph. In other
words, the measurement error on an unshielded non-collider misleads structure learning
algorithms towards producing a spurious edge between its neighbours, resulting in a 3-
vertex clique. Note that structure learning can reconstruct up to the CPDAG V1−V3−V2,
or one of its corresponding DAGs, when the input data does not incorporate measurement
error.
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V1 V2V3

V ∗
3

(a)

V1 V2

V3

(b)

Figure 3: (a) A noisy graph that contains three error-free variables V1, V2 and V3, and a
noisy variable V ∗3 . (b) The learned graph that entails the same dependence and
independence relationships derived from the observed variables.

We refer to a path p between error-free variables V1 and V2 in a noisy graph G∗ as
a connecting path if (i) there are no colliders in p and (ii) all intermediate nodes in p
incorporate measurement error.

Proposition 3 Given the causal faithfulness assumption and large sample limit, for any
two non-adjacent error-free variables V1 and V2 in a noisy graph G∗, if V1 and V2 are
adjacent in the learned graph Gl, then there must be at least one connecting path p between
V1 and V2 in G∗. Besides, for each connecting path p, there is a 3-vertex clique {V1, V2, Vk}
in the learned graph Gl, where Vk is a variable in p.

Proof Without loss of generality, we consider the situation where both V1 and V2 incorpo-
rate measurement error in the observed data. Since V1 and V2 are adjacent in the learned
graph Gl but not adjacent in the noisy graph G∗, there must be at least one path p between
V1 and V2 in G∗ such that (i) no node in p is a collider, and (ii) all intermediate nodes in
p incorporate measurement error. Otherwise, a set of observed variables could d-separate
V ∗1 and V ∗2 in G∗, and this would contradict with the adjacency between V1 and V2 in the
learned graph. If there is a connecting path p = {V1, S1, S2, . . . , Sn, V2}, we can obtain
another connecting path p′ = {V1, S1, S2, . . . , Sn} between V1 and Sn. Thus, V ∗1 and S∗n
would also be d-connected in the noisy graph given any observed variable set which leads
to the presence of an edge between V1 and Sn in the learned graph. Besides, V2 and Sn
should still be adjacent in the learned graph given the Proposition 1. Therefore, V1, V2 and
Sn form a 3-vertex clique in the learned graph.

We, therefore consider a 3-vertex clique as a sign for the presence of measurement error
in at least one of the variables that make up the clique. When a learned graph contains
such a clique, we need to determine whether the clique is in the error-free graph or the
outcome of measurement error. If we could distinguish between these two possibilities, then
we would be able to remove the spurious edges in the graph learned from noisy data. This
challenge can be viewed as a type of a hidden variable problem. In our case, a potential
hidden variable represents the error-free parent of its corresponding noisy version.

Figure 4 presents an example based on the PC-stable algorithm and the classic Asia
network1 Specifically, Figure 4a represents the true Asia network, Figure 4b represents the

1. The variables in the Asia network are all binary. This example assumes the sample size of the data is
10,000.
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graph learned from the error-free data set, and Figure 4c represents the graph learned from
the noisy data set with 5% measurement error on variable bronc, as defined by Equation 1,
i.e., 5% of the value in bronc data are recorded by another valid but incorrect state. This
relatively small rate of error has led to the spurious edge between smoke and dysp. This is
because while smoke and dysp are independent conditional on the error-free variables bronc
and either, this conditional independence is relaxed in the presence of measurement error
on variable bronc and hence, the algorithm produces the additional FP edge. Moreover,
this additional edge produces the 3-vertex clique {smoke, bronc, dysp} that does not exist
in the true Asia network nor in the graph learned from the error-free data set.

asia

tub

either

lung

smoke

bronc

dyspxray

(a)

asia

tub

either

lung

smoke

bronc

dyspxray

(b)

asia

tub

either

lung

smoke

bronc

dyspxray

(c)

Figure 4: (a) The true Asia network. (b) The CPDAG learned by PC-stable given the
error-free synthetic data set. (c) The CPDAG learned by PC-stable given the
same synthetic data set but with 5% measurement error on variable bronc.

To investigate the impact of measurement error on BN structure learning in general, we
have extended these experiments to four algorithms spanning different classes of learning.
Namely, in addition to constraint-based PC-stable (Colombo and Maathuis, 2014), to the
score-based HC (Bouckaert, 1994) and ILP (Cussens, 2011), and to hybrid H2PC (Gasse
et al., 2014). We have used each of these algorithms to reconstruct 50 randomly generated
BNs consisting of 20 Boolean nodes, using the method described in (Ide and Cozman, 2002).
Each random network was used to generate two synthetic data sets of 10,000 sample size
each; one error-free data set and another noisy data set with 10% measurement error on
each variable.

Figure 5 compares the average number of 3-vertex cliques produced by each of the
algorithms with and without measurement error, and with reference to the average num-
ber of 3-vertex cliques present in the ground truth graphs. These initial empirical re-
sults show that structure learning algorithms tend to produce more 3-vertex cliques in
the graphs learned from noisy data sets compared to both the true graph and the graphs
learned from error-free data sets. Moreover, score-based learning seems to be more sen-
sitive to the measurement error compared to constraint-based learning, although this ob-
servation is based on the default hyperparameters as implemented in the corresponding
packages (Scutari et al., 2010; Wongchokprasitti, 2019; Cussens, 2011) that we have used
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to test the algorithms. These results support our hypothesis that 3-vertex clique can be
viewed as a sign for the presence of measurement error in the input data.

0
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6

8

10

12

HC
(score-based)

ILP
(score-based)

PC-stable
(constraint-based)

H2PC
(hybrid-based)

ground truth
learned (error-free)
learned (10% error)

Figure 5: The average number of 3-vertex cliques in the ground truth graphs, the graphs
learned from error-free data sets, and the graphs learned from observed data sets
with 10% measurement error on each variable.

4. The Spurious Edge Detection (SED) algorithm

This section describes the Spurious Edge Detection (SED) algorithm which can be applied
to the output graph produced by any other BN structure learning algorithm to discover
and eliminate potential FP edges that tend to be the outcome of measurement error. The
implementation of SED is available online 2. Further to what has been discussed in Section 3,
SED focuses its search for FP edges on the induced subgraph of 3-vertex cliques.

We consider every edge that connects two variables Vi and Vj in a 3-vertex clique
{Vi, Vj , Vk} in the learned graph Gl to be a candidate spurious edge. According to Propo-
sition 3, the node Vk is likely to be a variable on a connecting path between Vi and Vj in
the underlying noisy graph G∗, as long as Vi and Vj are not adjacent in G∗. Therefore,
the conditional independence between Vi and Vj is likely to be retrieved by introducing an
error-free variable of Vk in the learned graph, and treat the observed data of Vk as the ob-
servation of its noisy version. We define the Candidate Spurious Edge-Nodes pair CSE (Ei)
for a candidate spurious edge Ei as the set of nodes that are adjacent to both the endpoints
of Ei. For instance, the CSE for Figure 6 is:

2. Our code is publicly available at https://github.com/Enderlogic/Spurious-Edge-Detection.
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CSE =



V1 → V2 : {V3, V4} ,
V1 → V3 : {V2} ,
V1 → V4 : {V2} ,
V2 → V3 : {V1, V5} ,
V2 → V4 : {V1} ,
V2 → V5 : {V3} ,
V3 → V5 : {V2}



V1

V2

V3

V4 V5

Figure 6: An example of a graph that
contains 3-vertex cliques

Next, let us revisit the Asia network example in Figure 4c to investigate the possibility
of a spurious edge in the presence of a single 3-vertex clique in the learned graph. Recall
that this is the graph learned by PC-stable in the presence of 5% measurement error on
variable bronc. Since the graph contains a single 3-vertex clique, the CSE for this graph is:

CSE =


bronc− dysp : {smoke} ,
smoke− dysp : {bronc} ,
smoke− bronc : {dysp}


We then perform three graphical reconstructions as shown in Figure 7, one for each

candidate spurious edge, given the Independence rule defined in Section 2, to identify and
eliminate a spurious edge. During the graph reconstruction process, we build the recon-
structed graphs that entail all the independences and conditional independences of the
learned graph, and test for an additional conditional independence relationship between the
endpoints of the candidate spurious edge. For example, the graph in Figure 7a investigates
the possibility of the edge bronc− dysp being spurious and of the variable smoke incorpo-
rating measurement error3, which is why it is replaced with a hidden unmeasured variable
representing its error-free version, with the noisy version smoke∗ restructured as a child of
the hidden variable. Moreover, the edge between bronc and dysp is removed such that the
conditional independence bronc ⊥⊥ dysp | smoke is introduced in the Figure 7a, by assum-
ing that the data for the variable smoke are noisy, which could also explain the presence of
clique {bronc, dysp, smoke} in the learned graph shown in Figure 4c. Similarly, Figures 7b
and 7c repeat this process for the remaining two variables in clique {bronc, dysp, smoke}.

Each reconstructed graph is then evaluated in terms of model selection between the
learned and observed distributions using the well-established Bayesian Information Criterion
(BIC) (Suzuki, 1993). While the true model is not present in the candidate collection of
graphs, the BIC function should still select the model that converges with probability one to
the quasi-true model as the sample size grows to infinite (Claeskens et al., 2008; Neath and
Cavanaugh, 2012). The quasi-true model in a candidate collection is the most parsimonious
model that is closest to the true model, as measured by the Kullback-Leibler information.
Therefore, when a reconstructed graph obtains a higher BIC score than the learned graph,
we consider the removal of that specific candidate spurious edge to produce a graph that is

3. In assessing whether bronc − dysp is spurious, we do not check for measurement error on variables
bronc and dysp, and this is because we assume that measurement error on the endpoints of the spurious
edge cannot be the cause of that spurious edge. For example, if the error-free graph is A → B → C,
measurement error on nodes A or C would not produce a spurious edge between A and C in the learned
graph, whereas measurement error on node B would do.
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Figure 7: The three reconstructed graphs for clique {bronc, dysp, smoke}, based on the
learned graph in Figure 4c. Dotted nodes represent possible hidden error-free
parents of the suspected noisy node under assessment.

closer to the error-free graph. Because the reconstructed graphs include additional hidden
variables, we adopt the Expectation-Maximization (EM) learning (Dempster et al., 1977)
to compute the Log-Likelihood (LL) score of the BIC for each of the reconstructed graphs,
and we describe this process in Appendix A.

When the endpoints of an edge in the learned graph are present in multiple 3-vertex
cliques simultaneously, it is possible that there is more than one connecting paths between
them in the underlying noisy graph, such that we may need to import multiple hidden
variables in the reconstructed graph to retrieve the missing conditional independence rela-
tionship. For example, in Figure 8a, V1 and V3 are conditionally independent given V2 and
V4. However, this conditional independency does not hold in the corresponding observed
data, and thus there is a spurious edge between V1 and V3 in the learned graph shown in
Figure 8b. In order to identify the true conditional independency between V1 and V3, i.e.,
V1 ⊥⊥ V3 | {V2, V4}, it requires that both the error-free nodes V2 and V4 are included in the
reconstructed graph, as illustrated in Figure 8c.

The process we have used to reconstruct graphs is described in Algorithm 1, that takes
as input a learned graph Gl, a set of noisy variables V , a candidate spurious edge E,
and a data set D. As described by Algorithm 1, a reconstructed graph is produced for
each candidate spurious edge by replacing each involved noisy variable with an error-free
variable, and adding the noisy variable as a child of its corresponding error-free variable.
The hidden error-free variable has the same state space as the corresponding noisy variable.
Moreover, the candidate spurious edge is removed from the reconstructed graph. Therefore,
a reconstructed graph entails all the independences of the learned graph, plus an additional
independency corresponding to the endpoints of the candidate spurious edge. The output
of Algorithm 1 represents the difference in BIC score between the reconstructed graph and
the input learned graph. If the input graph is a CPDAG, we compute the BIC score of that
graph based on one of its valid DAGs, since all the DAGs that are part of the same Markov
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Figure 8: (a) A noisy graph with four variables that incorporate measurement error. (b)
The learned graph with respect to (a). (c) The reconstructed graph that contains
the conditional independence V1 ⊥⊥ V3 | {V2, V4}.

equivalence class would return the same BIC score. If the input graph is a PDAG which
has no consistent DAG extensions, Algorithm 1 returns 0.

Algorithm 1 Graph reconstruction procedure

1: procedure Reconstruction(Gl, E,V , D)
Input: learned graph Gl, candidate spurious edge E, noisy variables V , data D
Output: difference in BIC score between reconstructed graph and input graph

2: Compute the BIC score scoreo of the input learned graph Gl

3: Create a copy of graph Gl as Gr
4: Replace each observed variable V in V in Gr with a hidden error-free variable that

preserves the state space of V
5: Reintroduce the observed variables V as noisy variables V ∗ in Gr, as the child of

their corresponding error-free variables
6: Remove edge E from Gr
7: Compute the BIC score scoreo of the reconstructed graph Gr
8: return scorer − scoreo
9: end procedure

Next, we introduce the complete SED algorithm, which represents an iterative process
that searches for spurious edges by recursively executing the aforementioned Algorithm 1,
and produces a modified graph that does not contain the edges identified as possible false
positives. The pseudocode of the SED algorithm is described in Algorithm 2. Firstly, SED
initialises the modified graph Gmod as a copy of the learned graph Gl, and generates the
candidate spurious edge-nodes pairs CSE from Gl. Then, SED recursively removes the
candidate edges ordered by with the highest positive output as determined by Algorithm 1
given the modified graph, and by assuming that there are l connecting paths between the
endpoints of the candidate edge in the underlying noisy graph, where l is initially set to 1
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and iteratively increased by 1 when no more edges can be identified as spurious give the
current value of l. Therefore, SED is able to explore multiple connecting paths between
the endpoints of every candidate spurious edge. The whole process is terminated when l
is larger than the maximal size of CSE (Ei). Note that when an edge between V1 and V2

in the learned graph is detected as spurious by assuming that there is a connecting path
between V1 and V2 via V3 in the underlying noisy graph, it implies that V1 and V3 are either
adjacent or connected through another connecting path that does not contain V2. If V1 and
V3 are adjacent in the noisy graph, it is not necessary to test whether the edge between
them is spurious in the learned graph. If there is a connecting path between V1 and V3 that
does not contain V2, then conditioning on the error-free variable V2 will not d-separate V1

and V3 in the noisy graph. Therefore, SED will check for multiple connecting paths between
V1 and V3.

Algorithm 2 Spurious Edge Detection (SED) algorithm

1: procedure SED(Gl, D)
Input: learned graph Gl, data set D
Output: modified graph Gmod

2: Gmod = Gl

3: initialise CSE from Gl

4: l = 1
5: repeat
6: CSEl = {}
7: for Ei ∈ CSE do
8: CSEl (Ei) = all subsets of CSE (Ei) with length l
9: end for

10: while max
Ei∈CSE,Vj∈CSEl(Ei)

Reconstruction
(
Gl, Ei,Vj , D

)
> 0 do

11: Em,Vm = arg max
Ei∈CSE,Vj∈CSEl(Ei)

Reconstruction
(
Gl, Ei,Vj , D

)
12: remove Em from Gmod
13: remove Em from CSE
14: if l == 1 then
15: prune the edges between each endpoint of Em and Vm from CSEl
16: end if
17: end while
18: l = l + 1
19: until l > max

Ei∈CSE
|CSE (Ei)|

20: return Gmod
21: end procedure

Table 1 presents a worked example that illustrates the different steps of SED when
applied to the graph shown in Figure 9. This experiment is based on the Asia network
learned by the HC algorithm from a synthetic data set with 10,000 samples and 5% mea-
surement error on each observed variable. In Table 1, the modified graph represents the
state of modified graph at the given iteration, the optimal reconstructed graph represents
the reconstructed graph with the highest positive output, and CSE represents the candi-
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date spurious edge set that contains edges that continue to be tested for false positives. The
red edges depicted in Table 1 represent the edges classified as spurious by SED, whereas
the blue edges represent the edges pruned (i.e., no longer being considered as candidate
spurious edges) after each iteration. A candidate spurious edge is pruned when no valid
reconstructed graph is found to have a score that is higher than the score of the learned
graph.

asia

tub

either

lung

smoke

bronc

dyspxray

CSE =



tub→ either : {xray} ,
tub→ xray : {either} ,
smoke→ lung : {either, dysp} ,
smoke→ either : {lung, dysp} ,
smoke→ bronc : {dysp} ,
smoke→ dysp : {lung, either, bronc} ,
lung → either : {smoke, dysp} ,
lung → dysp : {smoke, either} ,
bronc→ dysp : {smoke} ,
either → xray : {tub, dysp} ,
either → dysp : {smoke, lung, xray} ,
xray → dysp : {either}


Figure 9: Left: The Asia graph learned by the HC algorithm from a synthetic data set with

10,000 samples and 5% measurement error on each observed variable. Right: the
candidate spurious edge-nodes pairs CSE of the left graph.

Iteration Modified graph
Optimal

reconstructed graph
CSE

1

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

either∗

lung

smoke

bronc

dyspxray

tub→ either : {xray}
tub→ xray : {either}
smoke→ lung : {either, dysp}
smoke→ either : {lung, dysp}
smoke→ bronc : {dysp}
smoke→ dysp : {lung, either, bronc}
lung → either : {smoke, dysp}
lung → dysp : {smoke, either}
bronc→ dysp : {smoke}
either → xray : {tub, dysp}
either → dysp : {smoke, lung, xray}
xray → dysp : {either}
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2

asia

tub
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dyspxray

asia
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smoke

bronc

dyspxray

lung∗

smoke→ lung : {either, dysp}
smoke→ either : {lung, dysp}
smoke→ bronc : {dysp}
smoke→ dysp : {lung, either, bronc}
lung → either : {smoke, dysp}
lung → dysp : {smoke, either}
bronc→ dysp : {smoke}
either → xray : {tub, dysp}
either → dysp : {smoke, lung, xray}
xray → dysp : {either}

3

asia

tub

either
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smoke
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dyspxray

asia

tub

either

either∗

lung

smoke

bronc

dyspxray

smoke→ lung : {either, dysp}
smoke→ bronc : {dysp}
smoke→ dysp : {lung, either, bronc}
lung → either : {smoke, dysp}
lung → dysp : {smoke, either}
bronc→ dysp : {smoke}
either → xray : {tub, dysp}
either → dysp : {smoke, lung, xray}
xray → dysp : {either}

4
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tub
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dyspxray
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tub

either

either∗

lung

smoke
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dyspxray

smoke→ lung : {either, dysp}
smoke→ bronc : {dysp}
smoke→ dysp : {lung, either, bronc}
lung → either : {smoke, dysp}
bronc→ dysp : {smoke}
either → xray : {tub, dysp}
either → dysp : {smoke, lung, xray}
xray → dysp : {either}

5

asia

tub

either

lung

smoke

bronc

dyspxray

asia

tub

either

either∗

lung

smoke

bronc bronc∗

dyspxray

smoke→ lung : {either, dysp}
smoke→ dysp : {lung, either, bronc}
lung → either : {smoke, dysp}
either → xray : {tub, dysp}
either → dysp : {smoke, lung, xray}
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Table 1: The steps of the SED algorithm in modifying the Asia graph learned by HC from
synthetic data of sample size 10,000 with 5% measurement error on all variables.
The red edges represent the edges classified as spurious in each iteration, whereas
the blue edges represent the edges being pruned (i.e., no longer being considered
as candidate spurious edges) after each iteration.

The illustration in Table 1 starts by initialising the modified graph as a copy of the
learned graph shown in Figure 9, and determining the CSE based on that graph. Then,
SED iterates over the candidate spurious edges by assuming that there is one connecting
path between the endpoints of the candidate edges, i.e., assuming one variable which is
adjacent to the endpoints of the candidate spurious edge as noisy, and importing its error-
free parent in the reconstructed graph. During the iterative process, SED first identifies
tub → xray as spurious since the reconstructed graph that does not contain tub → xray
returns the highest score. SED then removes tub → xray from the modified graph and
further prunes tub → either from CSE (i.e., it is no longer considered as a candidate
spurious edge). This is because SED finds that there is a connecting path between tub and
xray via either, which in turn implies that tub and either are either adjacent or connected
through a connecting path that does not contain xray in the true noisy graph. Therefore,
it is not necessary to examine whether tub→ either is spurious under the assumption of a
single connecting path between tub and either via xray.

In the following iterations, SED repeats the above process and detects another three
spurious edges smoke → either, lung → dysp and xray → dysp. At that point, no further
edges are identified as spurious under the assumption that the cause is a single noisy variable.
SED continues assessing the remaining candidate spurious edges by assuming there are two
connecting paths between the endpoints, i.e., assuming two noisy variables which are both
adjacent to the endpoints of the candidate spurious edge, and importing their error-free
parents in the reconstructed graph. At that stage, SED discovers one more spurious edge,
smoke → dysp, and prunes smoke → lung, lung → either and either → xray from CSE
since no other higher scoring reconstructed graphs can be found given l = 2. Then, l
increases to 3 and SED prunes the last candidate spurious edge either → dysp from CSE,
since no other reconstructed graph can further increase BIC. SED then terminates the
search process since, at this point, all candidate spurious edges are pruned from CSE.

5. Empirical evaluation

We validate the effectiveness of the SED algorithm, which can be viewed as a structure
learning addon, by applying it to five well-established structure learning algorithms spanning
different classes of learning. These are the score-based HC, GES and ILP, the constraint-
based PC-stable and the hybrid H2PC. We use the bnlearn R package (Scutari et al., 2010)
to test the effect on HC and H2PC, the rcausal R package (Wongchokprasitti, 2019) for
PC-stable and GES, and the pygobnilp python package (Cussens, 2011) for ILP.

We use the BIC score as the objective function for the three score-based HC, GES and
ILP algorithms, and for the score-based phase of H2PC. For the constraint-based algorithm
PC-stable, including the constraint-based phase in H2PC, we use the G-square test as the
statistical test and set the threshold for rejecting the null hypothesis at 0.05. Lastly, ILP’s
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maximum in-degree is set to 3 (default hyperparameter). Because BIC is a score-equivalent
objective function, HC, GES, ILP and H2PC produce a DAG from a Markov Equivalent
Class of DAGs, and which we convert into the corresponding CPDAGs to be used as the
input of the SED algorithm; i.e., input graph G in Algorithm 2. Recall that when the
constraint-based PC-stable returns a PDAG that cannot be converted into a DAG, SED
makes no modifications since the BIC score cannot score that PDAG and hence, Algorithm 1
returns 0 in this case. We employ two metrics to evaluate the learned CPDAGs. These are
the F1 score which combines the Precision and Recall in the following form:

F1 = 2
Precision ·Recall
Precision+Recall

(2)

and the Structural Hamming Distance (SHD) (Tsamardinos et al., 2006) which represents
the number of edge additions, edge removals and arc reversals required to move from the
learned graph to true graph. Since the graphs learned from larger networks generally have
higher SHD scores, we divide the SHD score by the number of edges present in the true
graph to adjust SHD relative to the edges that can be discovered.

The experiments are based on synthetic data generated from seven real-world BN mod-
els that are publicly available in the bnlearn repository (Scutari, 2020). These are the Asia,
Alarm, Child, Insurance, Mildew, Water and Hailfinder networks. For each network, we
generated seven error-free data sets with the sample sizes ranging from 100 to 100,000.
Moreover, for each error-free data set we generate two noisy data sets by setting the error
rate αi for every variable Vi in a network to 0.1 and 0.2 respectively. Specifically, for each
state vli of an error-free variable Vi, we assign a randomised error rate αli, with an upper
bound of αi, where the probability of the error for each state vli follows a Dirichlet distri-
bution. This process produces the corresponding noisy conditional probability distribution
of each noisy variable V ∗i based on the following equation:

P
(
V ∗i | Vi = vli

)
=



αli1, V ∗i = v1
i

αli2, V ∗i = v2
i

...
...

1− αli, V ∗i = vli
...

...

αliri , V ∗i = vrii

(3)

where the parameters
(
αli1, α

l
i2, · · · , αliri

)
∼ αliDir (1, . . . , 1)︸ ︷︷ ︸

ri−1

such that αli =
∑ri

j=1 α
l
ij , ri

represent the number of states in Vi.

5.1 Results

We explore the performance of the SED algorithm on both error-free and noisy data sets.
Figure 10 presents the F1, precision and recall scores produced by the five algorithms aver-
aged across all seven networks, on both the error-free and noisy data sets, with and without
SED modifications. Note that in the case of error-free data sets, there is no visible difference

17



Liu, Constantinou, and Guo

in the precision, recall and F1 scores between the learned graphs and the graphs modified
by SED. From this, we can conclude that SED performs largely insignificant modifications
to the graphs learned from error-free data sets. On the other hand, the modifications made
on graphs learned from noisy data have led to noticeable improvements in terms of the
precision and F1 metrics, and particularly in cases where data have higher sample size.
This can be explained by the fact that the structure learning algorithms generally tend to
produce more edges when the input data contain higher samples, such that more false pos-
itive 3-vertex cliques that could be detected and corrected by SED. We present the results
of 3-vertex cliques in Appendix B. Another explanation is that the EM learning used by
SED is less effective when the sample size of the input data is low.

HC GES ILP PC−stable H2PC

P
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R
ecall
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1
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Figure 10: The average precision, recall and F1 scores of the graphs produced by the five
algorithms where solid lines represent the results before SED modifications, dashed lines
represent the results after SED modifications, red lines the results based on error-free data,
green lines the results based on noisy data with 10% error rate, and blue lines the results
based on noisy data with 20% error rate.

Specifically, the results show that SED improves the average precision and F1 scores
across all the five algorithms, when the data contain measurement error (both 10% or 20%)
and when the sample size is larger than 1,000. This suggests that the edges removed by
SED are mainly false positives, even though SED would occasionally also remove some
true positive edges which causes recall to drop slightly for some of the experiments. When
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the sample size is less than 1,000, the learned graphs tend to contain a small number of
3-vertex cliques (refer to the Appendix B), and this gives little to no opportunity to SED
to make modifications. The results also show that there is no apparent difference in the
gain in score over the two different levels of measurement error tested. Interestingly, the
improvements on graphs produced by score-based HC, GES and ILP are somewhat stronger
compared to the improvements on graphs produced by PC-stable and H2PC, based on the
hyperparameter defaults of these algorithms. These results are consistent with the empirical
analysis presented in Figure 5, which shows that score-based learning is more sensitive to
measurement error compared to constraint-based learning.

Figure 11 repeats these results for the SHD score. While the results are largely con-
sistent with those based on the F1 score, the improvements appear to be major and more
consistent in terms of the SHD score. Specifically, Figure 11 shows that after applying
SED to the graphs learned from noisy data by all five structure learning algorithms, the
number of removed and re-oriented edges required to convert the learned graphs to true
graphs is significantly reduced, and this reinforces the observation that SED is effective at
removing false positive edges. Figure 11 also shows that the number of edges produced by
the algorithms increases slightly with measurement error as expected. This implies that
SED is likely to have more opportunities to remove edges as the rate of measurement error
increases. Overall, the SHD results suggest that the SED algorithm improves the graphs
learned by the structure learning algorithms by successfully eliminating a greater number
of false positive, in relation to true positive, edges.

Table 2 presents the number and percentage of modified graphs that are better, equal or
worse than the learned graphs, under different experimental settings and evaluation metrics.
The results show that when no measurement error exists in the input data (i.e., error-free
case), the SED algorithm preserves the learned graph in around 90% of the cases, and im-
proves or decreases the performance approximately in equal proportions for the remaining
9 % of cases. Specifically, without measurement error in the data, the modifications in-
creased the F1 score in 11 (5%) graphs and decreased it in 10 (4%) graphs. Similarly, the
modifications increased the SHD score in 10 (5%) graphs and decreased it in 9 (4%) graphs.

On the other hand, when measurement error exists in the input data (i.e., noisy cases),
the SED modifications improve considerably more graphs than the graphs worsened. Ac-
cording to the SHD score, the SED modifications improve 120 (49%) and 130 (53%) learned
graphs and only worsen just 9 (4%) and 10 (4%) learned graphs when the error rate is 10%
and 20% respectively. In terms of the F1 score, the SED modifications improve 93 (38%)
and 109 (44%) learned graphs and worsen 51 (21%) and 48 (20%) learned graphs when the
error rate is 10% and 20% respectively. These percentages are generally consistent across
all five algorithms irrespective of their class of learning.

Lastly, Figure 12 presents the average execution time needed to produce the learned
and the modified graphs, across the different algorithms and over different error rates and
sample sizes. The execution time for the modified graphs refers to the time it takes SED
to modify the learned graphs. The five structure learning algorithms used to produce the
learned graphs spent similar time learning the graphs from error-free data and noisy data
with 10% error rate, and were slightly faster (in general) when learning from noisy data with
20% error rate. When it comes to SED, because the number of 3-vertex cliques tends to
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Figure 11: The average re-scaled SHD scores and its three components produced by the four
algorithms, where solid lines represent the results before SED modifies the graphs, dashed
lines represent the results after SED modifies the graphs, green lines the results based on
noisy data with 10% error rate, and blue lines the results based on noisy data with 20%
error rate.

increase with both the measurement and the sample size of the input data (see Appendix B),
it naturally spends more time to process learned graphs produced with higher error rate
and/or sample size. When the sample size is less than or equal to 10,000, the execution time
spent by SED is generally less than the time spent by the structure learning algorithms,
whereas the execution time is similar to that of the structure learning algorithms when the
sample size is larger than 10,000.
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Algorithm
Modified graph

vs
Learned graph

Error rate

0% 10% 20%

F1 SHD F1 SHD F1 SHD

HC

Better 7/14% 7/14% 25/51% 30/61% 25/51% 28/57%
Equal 38/78% 39/80% 16/33% 18/37% 18/37% 19/39%
Worse 4/8% 3/6% 8/16% 1/2% 6/12% 2/4%

GES

Better 0/0% 0/0% 20/41% 26/53% 21/43% 27/55%
Equal 45/92% 45/92% 17/35% 21/43% 18/37% 20/41%
Worse 4/8% 4/8% 12/24% 2/4% 10/20% 2/4%

ILP

Better 0/0% 0/0% 14/28% 23/47% 18/37% 25/51%
Equal 48/98% 48/98% 19/39% 25/51% 19/39% 22/45%
Worse 1/2% 1/2% 16/33% 1/2% 12/24% 2/4%

PC-stable

Better 2/4% 1/2% 13/27% 16/33% 25/51% 26/53%
Equal 47/96% 48/98% 30/61% 29/59% 15/31% 21/43%
Worse 0/0% 0/0% 6/12% 4/8% 9/18% 2/4%

H2PC

Better 2/4% 2/4% 21/43% 25/51% 20/41% 24/49%
Equal 46/94% 46/94% 19/39% 23/47% 18/37% 23/47%
Worse 1/2% 1/2% 9/18% 1/2% 11/22% 2/4%

Overall

Better 11/5% 10/4% 93/38% 120/49% 109/44% 130/53%
Equal 224/91% 226/92% 101/41% 116/47% 88/36% 105/43%
Worse 10/4% 9/4% 51/21% 9/4% 48/20% 10/4%

Table 2: The number and percentage of modified graphs that are better, equal or worse
than the learned graphs in terms of graphical accuracy, for each algorithm, error-rate, and
over different evaluation metrics.

6. Concluding remarks

This paper described the SED algorithm that can be viewed as a structure learning addon
which can be incorporated as an additional learning phase to discrete BN structure learning
algorithms. The purpose of SED is to discover and eliminate potential false positive edges
that structure learning algorithms tend to produce when learning graphs from data that
contain measurement error, irrespective of their class of learning.

We have applied SED modifications to graphs produced by algorithms spanning different
classes of learning (i.e., score-based, constraint-based and hybrid learning). The results are
based on both error-free and noisy synthetic data that vary in sample size, and which
have been generated from real-world BN models that also greatly vary in terms of the
size of network. SED is a heuristic algorithm that may lack the theoretical guarantees of
asymptotic correctness of its results. On this basis, we derive our conclusions solely on the
basis of the empirical investigation, which shows that SED generally maintains, or slightly
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Error rate 0% 10% 20% Output Learned graph Modified graph
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Figure 12: Average execution time needed to produce the learned and modified graphs
for the specified algorithms, across different error rate and sample size combinations. The
execution time of SED is based on the time it takes to modify graphs.

improves, the graphs produced by other algorithms when these graphs are learned from
error-free data, and effectively improves the graphs learned from noisy-data.

A limitation of our work is that SED is restricted to discrete data. While extending
SED to continuous data might be a sensible direction for future work, it should be noted
that working with continuous data is likely to introduce further challenges, and this is
because the computational complexity of EM learning tends to increase substantially when
applied to continuous data. Another limitation is that the proposed algorithm relies on the
assumption that a noisy variable is independent of other variables in the network conditional
on its error-free version, and this assumption is often considered to be too strong in some
fields (Hu, 2008). For example, a survey on unemployment data by Bound et al. (2001)
shows that unemployment rate is underestimated, and the underestimation error appears
to be dependent on the demographic characteristics of the respondent, such as age and
sex. Moreover, since the problem of measurement error can be viewed as a special case of
a hidden variable problem, future work could extend the application of this approach to
structure learning algorithms designed to learn graphical structures under the assumptions
of causal insufficiency (Zhang, 2008; Ogarrio et al., 2016).
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Appendix A. EM algorithm and BIC score

The EM algorithm (Lauritzen, 1995) is an iterative process that computes the Maximum
Likelihood Estimation (MLE) of the parameters θ for a given structure and from incom-
plete data. Generally, The EM algorithm can be decomposed in two steps, known as the
Expectation step (E step) and the Maximization step (M step). In the E step, the EM
algorithm computes the expected log-likelihood function Q

(
θ | θt

)
based on θt obtained

with each sample (data row) in the data. Assuming X represents a set of variables with
missing values in data set D with sample size N , the expectation of the LL function is:

Q
(
θ | θt

)
=

N∑
m=1

∑
x∈ΩX

P
(
X = x | Dm, θ

t
)

logP (X = x, Dm | θ) (4)

At the M step, the EM algorithm revises θ by maximising the expected LL:

θt+1 = arg max
θ

Q
(
θ | θt

)
(5)

The EM algorithm starts from a random initialisation of θ and terminates when the LL
converges over a given threshold ε:

logP
(
D | θt

)
− logP

(
D | θt−1

)
< ε (6)

where ε is a threshold for judging whether the process is converged.
Applying EM learning on a BN requires that we compute:

Ñ t
ijk =

∑
m

P
(
Vi = k, pa (Vi) = j | Dm, θ

t
)

(7)

for the E step, where Ñijk represents the expected count of number of records where the
value of variable Vi = k and its parents pa (Vi) = j. For the M step, the solution of equation
5 has the following form:

θt+1 =
Ñ t
ijk∑

k Ñ
t
ijk

(8)

Once the parameters of the model are estimated, the LL obtained by EM is used as the
LL input in the BIC equation to measure the goodness-of-fit of a given reconstructed graph
Gr with respect to the observed data. Specifically, the BIC score of a BN model M and
corresponding data set D is defined as:

BIC (M | D) = logP (D |M)− 1

2
log (N) d (9)

where N is the sample size of data set D and d =
∑
i

(ri − 1) qi is the number of free

parameters in M , where ri represents the number of states in variable Vi and qi represents
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the number of configuration of the parents of Vi. When computing the BIC score on
Bayesian Network without hidden variables, due to the decomposability of the LL function,
the equation 9 can be simplified as:

BIC (M | D) =
∑
ijk

Nijk
Nijk

Nij
− 1

2
log (N) d (10)

where Nijk is the number of counts when Vi = k and pa (Vi) = k and Nij =
∑

kNijk.

However, when computing the BIC score on a reconstructed graph, the LL function
is not decomposable due to the presence of hidden variable, which means that we cannot
directly use equation 10. Instead, we use the LL converged at the final M-step as described in
equation 6. We use the formula d =

∑
i

(ri − 1) qi to determine the number of free parameters

d in the reconstructed graph, considering both the hidden and observed variables. This
equation represents the upper bound of the number of free parameters of graphs with
hidden variables (Geiger et al., 1998, 2001). Because there is no closed form solution to
compute the number of free parameters of the reconstructed graphs that contain hidden
variables, we assume the highest theoretical upper bound of the number of free parameters,
and this implies high dimensionality penalty which in turn decreases the likelihood that
the reconstructed graphs will outperform the learned graphs in terms of the BIC score.
Moreover, if the learned graph or a reconstructed graph is a CPDAG, we will randomly
select a DAG from the Markov equivalence class of the CPDAG and retrieve the BIC score
of that DAG to represent the BIC score of the CPDAG, since the BIC score is equivalent
for Markov equivalent DAGs.
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Appendix B. The number of 3-vertex cliques produced under different
scenarios
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Figure 13: The average number of false and true 3-vertex cliques produced by the learned
graphs learned from error-free data sets, the learned graphs learned from noisy data sets
and the modified graphs learned from noisy data sets.
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